Jump to content

WFPB - The BROAD study - New Zeeland


Cyberknutte

Recommended Posts

Jag fick denna länk från en vegan i min närhet. Tydligen så hänvisas det frekvent till denna undersökning på olika vegan youtube kanaler som tycker att den är det ultimata beviset för veganismens storhet...

Själv är jag övertygad om fördelarna med lchf och periodisk fasta, men det skulle vara kul om någon kunnig kunde kommentera denna studie och resultaten. Är de något på spåren? Skall man byta diet? 🙂

 

”The BROAD study: A randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes”

https://www.nature.com/articles/nutd20173

// Andreas

 

  • Like 1
Link to comment
Share on other sites

En frågeformulärstudie med väldigt få deltagare där man mätte bmi och kolesterol. Säger inte mycket. 

Results

Of the 693 total people invited by mail, 65 (9.4%) were randomised to either intervention or control. At the 6-month assessment 49 of 65 (75.4%) participants were followed up: 25 (76%) of the intervention group and 24 (75%) of the control. From the intervention group 23 (70%) were followed up at 1 year (Figure 1). Baseline characteristics are available in Table 1.

  • Like 1
Link to comment
Share on other sites

1 hour ago, Annika Dahlqvist said:

vilket väl betyder normal sockerrik  skräpmat

Ja, det framgår av att interventionsgruppen fick instruktioner att undvika socker, processade spannmålsprodukter, salt och alkohol. De fick även en kurs i vegansk matlagning två gånger i veckan.

https://media.nature.com/original/nature-assets/nutd/journal/v7/n3/extref/nutd20173x4.docx

Kontrollgruppen förväntades fortsätta med "standardkosten" i " the region with New Zealand’s highest rates of socioeconomic deprivation, obesity and type 2 diabetes"

 

  • Like 3
Link to comment
Share on other sites

Vegankosten var bättre för vikten än den standardkost de åt tidigare. Tycker inte det är speciellt anmärkningsvärt egentligen. Nya Zeeland har betydligt högre andel fetma än t.ex Sverige, så rimligen är deras "standardkost" mycket sämre än vad en medelsvensson har på tallriken.

Fetma och diabetes 2 är också ett abnormt hälsoproblem bland alla de med genetisk koppling till den ursprungliga befolkningen på Nya Zeeland+Stillahavsöarna förövrigt. Detta är ett generellt problem bland alla folkgrupper som ännu inte hunnit anpassa sig till västerländsk kost. 

 I studien specifikt så avråddes även deltagarna från att äta socker och processat, vilket nog bidrog mer till det goda resultatet än avsaknaden av animaliska produkter.

Tar man bort västerländsk skräpmat och ersätter det med något annat, vilket diet som helst där man exkluderar socker och processat, så kommer du se en minskning i BMI och främst hos folkgrupper som är dåligt anpassade. 

  • Like 6
  • Thanks 1
Link to comment
Share on other sites

15 timmar sedan, Cyberknutte sade:

Skall man byta diet?

De är något på spåret, dvs nästan alla som frivilligt vill delta i en sådan studie är angagerade, de gör sitt bästa!

Spelar egentligen ingen större roll om det handlar om LCHF eller vegandiet.

Alla som får bra kostråd och har en bra relation till sina försöksledare gör oftast ett strålande resultat.

  • Like 3
Link to comment
Share on other sites

Man kan  se att även i studien trots att man gav B12 supplement fick 2 av deltagarna (10%) brist på B12 vitamin. Man kan ju fundera på vad som händer med människor som  äter veganskt och inte får föreläsningar 2 gånger i veckan om hur man ska äta... Det är väl precis detta som är problemet med vegankost att om man inte är påläst så är risken för näringsbrist ganska stor.

  • Like 4
  • Thanks 1
Link to comment
Share on other sites

8 timmar sedan, Peter B sade:

Man kan  se att även i studien trots att man gav B12 supplement fick 2 av deltagarna (10%) brist på B12 vitamin.

Nu har jag inte kollat hur länge de höll på men är det inte så att det tar ett tag innan B12-depåerna är slut? Och att det är därför man kan vara vegetarian rätt länge innan man märker nåt?

  • Like 4
Link to comment
Share on other sites

9 timmar sedan, Peter B sade:

Man kan  se att även i studien trots att man gav B12 supplement fick 2 av deltagarna (10%) brist på B12 vitamin. Man kan ju fundera på vad som händer med människor som  äter veganskt och inte får föreläsningar 2 gånger i veckan om hur man ska äta... Det är väl precis detta som är problemet med vegankost att om man inte är påläst så är risken för näringsbrist ganska stor.

PREXIS.. dvs jag har lixom inga jättestora tvivel på att man kan leva och ha hälsan på en vegansk diet.. så länge man tar sina B12  och för övrigt behärskar både näringslära och kokkonst!

Såå. då kommer vi till  LCHF utfört på ett bra sätt.. man skulle kunna kalla det för en kombo mellan "Raw vegan" och Carniovore diet!

Dvs jag har bara för mig att Homo Sapien Sapiens är omniovorer?

Dvs för säkerhets skull.. för hälsan.. för välmåendet.. är det nog bäst att köra en strikt omnivore diet?

Oså vore det inte fel om man fick matlagnings-råd/livstils-råd iallafall minst en gång i veckan.

Dvs är det någon som vill gifta sig med mig och bli min fru, laga den mesta maten/städa/gillar motorcyklar samt flugfiske/lugn och ro.. så kan jag iallafall erbjuda 60 kvadrat. på landet. utanför Göteborg.

  • Like 1
  • Boom 1
Link to comment
Share on other sites

52 minuter sedan, MariaF sade:

Nu har jag inte kollat hur länge de höll på men är det inte så att det tar ett tag innan B12-depåerna är slut? Och att det är därför man kan vara vegetarian rätt länge innan man märker nåt?

B12 depåerna  varar cirka tre månader eller i tre år!

  • Like 1
  • Confused 2
Link to comment
Share on other sites

"B-12 recycling and interactions
shim.gif
To a great extent, B-12 is recycled from liver bile in the digestive system. This is one reason why vitamin B-12 deficiency is rare among vegans, even those who do not use supplements or supplemented foods. The recycling is summarized by Herbert [1994, p. 1217S]:

 

The enterohepatic circulation of vitamin B-12 is very important in vitamin B-12 economy and homeostasis (27). Nonvegetarians normally eat ~2-6 mcg of vitamin B-12/d and excrete from their liver into the intestine via their bile 5-10 mcg of vitamin B-12/d. If they have no gastric, pancreatic, or small bowel dysfunction interfering with reabsorption, their bodies reabsorb ~3-5 mcg of bile vitamin B-12/d. Because of this, an efficient enterohepatic circulation keeps the adult vegan, who eats very little vitamin B-12, from developing B-12 deficiency disease for 20-30 y (27)...

Unlike the vegetarian whose absorption machinery is normal, the person whose absorption machinery is damaged by a defect in gastric secretion, by a defect in pancreatic secretion, or by a defect in the gut that produces intestinal malabsorption will develop vitamin B-12 deficiency in 1-3 y because these absorption defects block not only absorption of food vitamin B-12, but reabsorption of vitamin B-12 excreted into the intestinal tract in the bile (2,6).

 

Reduction in stomach acid promotes B-12 deficiency. A reduction in gastric (stomach) acids is associated with the development of bacterial colonies in the stomach that produce analogues of vitamin B-12, which can accelerate or promote B-12 deficiency. From Herbert et al. [1984, p. 164]:

 

As pernicious anemia develops, the first loss usually is of gastric acid. Figure 3 (from Drasar and Hill, 23) shows that the achlorhydric stomach [one unable to produce hydrochloric acid] is usually heavily colonized with enteric bacteria. The increased colonies of enteric bacteria in the achlorhydric stomach and small intestine of the pernicious anemia patient may produce analogue which may in three ways accelerate the development of B-12 deficiency."
http://www.beyondveg.com/billings-t/comp-anat/comp-anat-7a.shtml#vit B-12
  • Like 2
Link to comment
Share on other sites

3 timmar sedan, MariaF sade:

Nu har jag inte kollat hur länge de höll på men är det inte så att det tar ett tag innan B12-depåerna är slut? Och att det är därför man kan vara vegetarian rätt länge innan man märker nåt?

Det var inte mitt påhitt att de fick B-vitamin-brist. 😉
"Two intervention participants developed low serum vitamin B12, which normalised with supplementation."

  • Like 4
  • Haha 3
Link to comment
Share on other sites

On 2019-04-01 at 07:33, Cyberknutte sade:

det ultimata beviset för veganismens storhet... 

 Är de något på spåren? Skall man byta diet? 🙂

 

Redan hänvisningen till John McDougall säger en del. Det ni tidigare påpekat om värdet av :

The BROAD study 

skriver jag under på. Den är bara en i mängden som inte säger någonting om fördelarna med kolhydratkost i jämförelsen med lågkolhydratkost.

Har ni f.ö. märkt att man från vegansidan ständigt framhåller att det finns så lite material som pekar på fördelarna med lågkolhydratkosten?

Här finns lite av det som påstås inte finnas - något för var och en som vill visa några texter som kan vara bra för veganen att studera. F.ö. kan det vara bra, för den LCHF-entusiast som vill leta fram roten till fördelarna med lågkolhydratkosten att här enkelt klicka fram studier av särskilt intresse:

Studier som fokuserar på fördelarna med  Ketogen kost

  1. A Critique of Low-Carbohydrate Ketogenic Weight Reduction Regimens (Council on Foods and Nutrition of the American Medical Association, 1973) – Source
  2. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. (Bueno et al., 2013) – Source
  3. Ketogenic Diet for Obesity: Friend or Foe? (Paoli, 2014) – Source
  4. Ketosis, ketogenic diet and food intake control: a complex relationship (Paoli et al., 2015) – Source
  5. Fat-Free Mass Changes During Ketogenic Diets and the Potential Role of Resistance Training (Tinsley and Willoughby, 2016) – Source
  6. International society of sports nutrition position stand: diets and body composition (Aragon et al., 2017) – Source
  7. Composition of weight lost during short-term weight reduction. Metabolic responses of obese subjects to starvation and low-calorie ketogenic and nonketogenic diets (Yang and Itallie, 1976) – Source
  8. Protein sparing during treatment of obesity: ketogenic versus nonketogenic very low calorie diet (Vazquez and Adibi, 1992) – Source
  9. The effects of a high-protein, low-fat, ketogenic diet on adolescents with morbid obesity: body composition, blood chemistries, and sleep abnormalities (Willi et al., 1998) – Source
  10. Comparison of energy-restricted very low-carbohydrate and low-fat diets on weight loss and body composition in overweight men and women (Volek et al., 2004) – Source
  11. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum (Johnstone et al., 2008) – Source
  12. Resistance training in overweight women on a ketogenic diet conserved lean body mass while reducing body fat (Jabekk et al., 2010) – Source
  13. Ketogenic diet does not affect strength performance in elite artistic gymnasts (Paoli et al., 2012) – Source
  14. The effect of weight loss by ketogenic diet on the body composition, performance-related physical fitness factors and cytokines of Taekwondo athletes (Rhyu and Cho, 2014) – Source
  15. The effects of ketogenic dieting on skeletal muscle and fat mass (Rauch et al., 2014) – Source
  16. Short-term safety, tolerability and efficacy of a very low-calorie-ketogenic diet interventional weight loss program versus hypocaloric diet in patients with type 2 diabetes mellitus (Goday et al., 2016) – Source
  17. Very-low-calorie ketogenic diet with aminoacid supplement versus very low restricted-calorie diet for preserving muscle mass during weight loss: a pilot double-blind study (Merra et al., 2016) – Source
  18. A Low-Carbohydrate Ketogenic Diet Combined with 6-Weeks of Crossfit Training Improves Body Composition and Performance (Gregory et al., 2017) – Sources
  19. The Effects of Ketogenic Dieting on Body Composition, Strength, Power, and Hormonal Profiles in Resistance Training Males (Wilson et al., 2017) – Sources
  20. Efficacy and safety of very-low-calorie ketogenic diet: a double blind randomized crossover study (Colica et al., 2017) – Source
  21. Capacity for Moderate Exercise in Obese Subjects after Adaptation to a Hypocaloric, Ketogenic Diet (Phinney et al., 1980) – Source
  22. Ketogenic diets and physical performance (Phinney, 2004) – Source
  23. Acute nutritional ketosis: implications for exercise performance and metabolism (Cox and Clarke, 2014) – Source
  24. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes (Cox et al., 2016) – Source
  25. The Effects of a Ketogenic Diet on Exercise Metabolism and Physical Performance in Off-Road Cyclists (Zajac et al., 2014) – Source
  26. Metabolic characteristics of keto-adapted ultra-endurance runners (Volek et al., 2016) – Source
  27. Ketogenic diet benefits body composition and well-being but not performance in a pilot case study of New Zealand endurance athletes (Zinn et al., 2017) – Source
  28. Clinical Aspects of the Ketogenic Diet (Hartman and Vining, 2007) – Source
  29. A low-carbohydrate, ketogenic diet to treat type 2 diabetes (Yancy et al., 2005) – Source
  30. Beneficial effects of ketogenic diet in obese diabetic subjects (Dashti et al., 2007) – Source
  31. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus (Westman et al., 2008) – Source
  32. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes (Hussain et al., 2012) – Source
  33. An Online Intervention Comparing a Very Low-Carbohydrate Ketogenic Diet and Lifestyle Recommendations Versus a Plate Method Diet in Overweight Individuals With Type 2 Diabetes: A Randomized Controlled Trial (Saslow et al., 2017) – Source
  34. Effects of Ketogenic Diets on Cardiovascular Risk Factors: Evidence from Animal and Human Studies (Kosinski and Jornayvaz, 2017) – Source
  35. The AMP-Activated Protein Kinase Is Involved in the Regulation of Ketone Body Production by Astrocytes (Blázquez et al., 1999) – Source
  36. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer (Zhou et al., 2007) – Source
  37. Role of ketogenic metabolic therapy in malignant glioma: A systematic review (Winter et al., 2017) – Source
  38. A Nutritional Perspective of Ketogenic Diet in Cancer: A Narrative Review (Oliveira et al., 2017) – Source
  39. Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation (Klement, 2017) – Source
  40. Systematic review: isocaloric ketogenic dietary regimes for cancer patients (Erickson et al., 2017) – Source
  41. Assessing the Role of the Ketogenic Diet as a Metabolic Therapy in Cancer: Is it Evidence Based? (Macias and Sharpe, 2017) – Source
  42. Pleiotropic effects of nutritional ketosis: Conceptual framework for keto-adaptation as a breast cancer therapy (Hyde et al., 2017) – Source
  43. A Multicenter Study of the Efficacy of the Ketogenic Diet (Vining et al., 1998) – Source
  44. Ketogenic diet for the treatment of refractory epilepsy in children: A systematic review of efficacy (Lefevre and Aronson, 2000) – Source
  45. Fasting versus Gradual Initiation of the Ketogenic Diet: A Prospective, Randomized Clinical Trial of Efficacy (Bergqvist et al., 2005) – Source
  46. Efficacy of the Ketogenic Diet as a Treatment Option for Epilepsy: Meta-analysis (Henderson et al., 2006) – Source
  47. The ketogenic diet: From molecular mechanisms to clinical effects (Freeman et al., 2006) – Source
  48. The Neuropharmacology of the Ketogenic Diet (Hartman et al., 2007) – Source
  49. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial (Neal et al., 2008) – Source
  50. Ketogenic diet for treatment of epilepsy (Rogovik and Goldman, 2010) – Source
  51. The ketogenic diet: metabolic influences on brain excitability and epilepsy (Lutas and Yellen, 2013) – Source
  52. Is Ketogenic Diet Truly Effective in Mitochondrial Epilepsy? (Finsterer and Kothari et al., 2014) – Source
  53. Dietary and Medication Adjustments to Improve Seizure Control in Patients Treated With the Ketogenic Diet (Selter et al., 2014) – Source
  54. Ketogenic diet in adolescents and adults with epilepsy (Nei et al., 2014) – Source
  55. Ketogenic diet and other dietary treatments for epilepsy (Martin et al., 2016) – Source
  56. A randomized controlled trial of the ketogenic diet in refractory childhood epilepsy (Lambrechts et al., 2016) – Source
  57. Impact of a Modified Ketogenic Diet on Seizure Activity, Biochemical Markers, Anthropometrics and Gastrointestinal Symptoms in Adults with Epilepsy (Schuchmann et al., 2017) – Source
  58. How does the ketogenic diet induce anti-seizure effects? (Rho, 2017) – Source
  59. Efficacy of ketogenic diet in resistant myoclono-astatic epilepsy: A french multicenter retrospective study (de Saint-Martin et al., 2017) – Source
  60. The role for ketogenic diets in epilepsy and status epilepticus in adults (Williams et al., 2017) – Source
  61. Long-term effects of a ketogenic diet in obese patients (Dashti et al., 2004) – Source
  62. Neuroprotective and disease-modifying effects of the ketogenic diet (Gasior et al., 2006) – Source
  63. Timeline of changes in appetite during weight loss with a ketogenic diet (Nymo et al., 2017) – Source
  64. Ketogenic diet in migraine: rationale, findings and perspectives (Barbanti et al., 2017) – Source
  65. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies (Maalouf et al., 2009) – Source
  66. A Ketogenic Diet Favorably Affects Serum Biomarkers for Cardiovascular Disease in Normal-Weight Men (Sharman et al., 2002) – Source
  67. A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice (Roberts et al., 2017) – Source
  68. Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice (Newman et al., 2017) – Source
  69.  An 8-Week, Low Carbohydrate, High Fat, Ketogenic Diet Enhanced Exhaustive Exercise Capacity in Mice Part 2: Effect on Fatigue Recovery, Post-Exercise Biomarkers and Anti-Oxidation Capacity (Huang et al., 2018) – Source
  70. A Ketogenic Diet Reduces Central Obesity and Serum Insulin in Women with Ovarian or Endometrial Cancer (Cohen et al., 2018) – Source
  71.  A Low-Carbohydrate Ketogenic Diet Reduces Body Mass Without Compromising Performance in Powerlifting and Olympic Weightlifting Athletes (Greene et al., 2018) – Source
  72. Ketogenic diets attenuate cyclooxygenase and lipoxygenase gene expression in multiple sclerosis (Bock et al., 2018) – Source
  73. The Potential Use of a Ketogenic Diet in Pancreatobiliary Cancer Patients After Pancreatectomy (Ok et al., 2018) – Source
  74. Ketogenic diet acts on body remodeling and microRNAs expression profile (Cannataro et al., 2018) – Source
  75. Two-Week Exclusive Supplementation of Modified Ketogenic Nutrition Drink Reserves Lean Body Mass and Improves Blood Lipid Profile in Obese Adults: A Randomized Clinical Trial (Choi et al., 2018) – Source
  76. Effects of Ketone Bodies on Endurance Exercise (Sansone et al., 2018) – Source
  77. The emerging role of ketogenic diets in cancer treatment (Klement, 2018) – Source
  78. Ketogenic diet increases mitochondria volume in the liver and skeletal muscle without altering oxidative stress markers in rats (Parry et al., 2018) –  Source
  79. The association between diet and mood: A systematic review of current literature (Arab et al., 2018) – Source
  80. Effect of A Very Low-Calorie Ketogenic Diet on Food and Alcohol Cravings, Physical and Sexual Activity, Sleep Disturbances, and Quality of Life in Obese Patients (Castro et al., 2018) – Source
  81. Implementing a low-carbohydrate, ketogenic diet to manage type 2 diabetes mellitus (Westman et al., 2018) – Source
  82. Use of cooking oils in a 2:1 ratio classical ketogenic diet for intractable pediatric epilepsy: Long-term effectiveness and tolerability (Lee et al., 2018) – Source
  83. Favorable Effects of a Ketogenic Diet on Physical Function, Perceived Energy, and Food Cravings in Women with Ovarian or Endometrial Cancer: A Randomized, Controlled Trial (Cohen et al., 2018) – Source
  84. Low-fat versus ketogenic diet in Parkinson’s disease: A pilot randomized controlled trial (Phillips et al., 2018) – Source
  85. Nutritional Ketosis for Weight Management and Reversal of Metabolic Syndrome (Gershuni et al., 2018) – Source
  86. Ketogenic diet for schizophrenia: Nutritional approach to antipsychotic treatment (Włodarczyk et al., 2018) – Source
  87. Effect of Ketogenic Diet on Motor Functions and Daily Living Activities of Children With Multidrug-Resistant Epilepsy: A Prospective Study (Cubukcu et al., 2018) – Source
  88. Ketogenic diet as a metabolic therapy for mood disorders: Evidence and developments (Brietzke et al., 2018) – Source
  89. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease (Taylor et al., 2017) – Source

Study som generelllt fokuserar på fördelarna med lågkolhydratkost

  1. A Critique of Low-Carbohydrate Ketogenic Weight Reduction Regimens (Council on Foods and Nutrition of the American Medical Association, 1973) – Source
  2. Atkins and other low-carbohydrate diets: hoax or an effective tool for weight loss? (Astrup et al., 2004) – Source
  3. Very-low-carbohydrate diets and preservation of muscle mass (Manninen, 2006) – Source
  4. Low-Carbohydrate Diets Promote a More Favorable Body Composition Than Low-Fat Diets (Volek et al., 2010) – Source
  5. Effects of Low-Carbohydrate Diets Versus Low-Fat Diets on Metabolic Risk Factors: A Meta-Analysis of Randomized Controlled Clinical Trials (Hu et al., 2012) – Source
  6. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. (Bueno et al., 2013) – Source
  7. Evidence that supports the prescription of low-carbohydrate high-fat diets: a narrative review (Noakes and Windt, 2016) – Source
  8. International society of sports nutrition position stand: diets and body composition (Aragon et al., 2017) – Source
  9. Body composition and hormonal responses to a carbohydrate-restricted diet (Volek et al., 2002) – Source
  10. Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets (Johnston et al., 2006) – Source
  11. Effects of Low-Carbohydrate and Low-Fat Diets: A Randomized Trial (Bazzano et al., 2014) – Source
  12. Adherence to low-carbohydrate and low-fat diets in relation to weight loss and cardiovascular risk factors (Hu et al., 2016) – Source
  13. The effect of an 8-week low carbohydrate high fat (LCHF) diet in sub-elite Olympic weightlifters and powerlifters on strength, body composition, mental state and adherence: a pilot case-study (Chatterton et al., 2017) – Source
  14. A Low-Carbohydrate Ketogenic Diet Combined with 6-Weeks of Crossfit Training Improves Body Composition and Performance (Gregory et al., 2017) – Source
  15. Fat utilization during exercise: adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans (Helge et al., 2001) – Source
  16. Low-carbohydrate nutrition and metabolism (Westman et al., 2007) – Source
  17. Carbohydrates and exercise performance in non-fasted athletes: A systematic review of studies mimicking real-life (Colombani et al., 2013) – Source
  18. The use of carbohydrates during exercise as an ergogenic aid (Cermak and van Loon, 2013) – Source
  19. Re-Examining High-Fat Diets for Sports Performance: Did We Call the ‘Nail in the Coffin’ Too Soon? (Burke, 2015) – Source
  20. Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high-fat diet (Webster et al., 2016) – Source
  21. Differential in Maximal Aerobic Capacity by Sex in Collegiate Endurance Athletes Consuming a Marginally Low Carbohydrate Diet (Baranauskas et al., 2017) – Source
  22. Low-Carbohydrate-High-Fat Diet: Can it Help Exercise Performance? (Chang et al., 2017) – Source
  23. Improvement of gastroesophageal reflux disease after initiation of a low-carbohydrate diet: five brief case reports (Yancy et al., 2001) – Source
  24. A Very Low-Carbohydrate Diet Improves Gastroesophageal Reflux and Its Symptoms (Austin et al., 2006) – Source
  25. Systematic review: the effects of conservative and surgical treatment for obesity on gastro-oesophageal reflux disease (De Groot et al., 2009) – Source
  26. Dietary carbohydrate intake, insulin resistance and gastro-oesophageal reflux disease: a pilot study in European- and African-American obese women (Pointer et al., 2016) – Source
  27. A low-carbohydrate as compared with a low-fat diet in severe obesity (Samaha et al., 2003) – Source
  28. Effect of a Low-Carbohydrate Diet on Appetite, Blood Glucose Levels, and Insulin Resistance in Obese Patients with Type 2 Diabetes (Boden et al., 2005) – Source
  29. A low-carbohydrate, ketogenic diet to treat type 2 diabetes (Yancy et al., 2005) – Source
  30. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus (Westman et al., 2008) – Source
  31. A critical review of low-carbohydrate diets in people with Type 2 diabetes (van Wyk et al., 2013) – Source
  32. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base (Feinman et al., 2015) – Source
  33. Is there a role for carbohydrate restriction in the treatment and prevention of cancer? (Klement and Kämmerer, 2011) – Source
  34. Low-carbohydrate nutrition and metabolism (Westman et al., 2007) – Source
  35. Vascular effects of a low-carbohydrate high-protein diet (Foo et al., 2009) – Source
  36. Effect of 6-month adherence to a very low carbohydrate diet program (Westman et al., 2002) – Source
  37. Adherence and success in long-term weight loss diets: the dietary intervention randomized controlled trial (DIRECT) (Greenberg et al., 2009) – Source
  38. Carbohydrate restriction with postmeal walking effectively mitigates postprandial hyperglycemia and improves endothelial function in type 2 diabetes (Francois et al., 2018) – Source
  39. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial (Ebbeling et al., 2018) – Source
  40. Dietary Patterns in Secondary Prevention of Heart Failure: A Systematic Review (Dos Reis Padilha et al., 2018) – Source
  41. Management of Type 1 Diabetes With a Very Low–Carbohydrate Diet (Lennerz et al., 2018) – Source
  42. Outcomes of a Digitally Delivered Low-Carbohydrate Type 2 Diabetes Self-Management Program: 1-Year Results of a Single-Arm Longitudinal Study (Saslow et al., 2018) – Source

Studier som fokuserar på nackdelarna med kolhydratkost 

  1. Body composition and hormonal responses to a carbohydrate-restricted diet (Volek et al., 2002) – Source
  2. Carbohydrate intake and resistance-based exercise: are current recommendations reflective of actual need (Escobar et al., 2016) – Source
  3. Dietary Carbohydrates Impair Healthspan and Promote Mortality (Ravichandran et al., 2017) – Source
  4. Diets low in carbohydrates for type 2 diabetics. Systematic review (Valenzuela Mencía et al., 2017) – Source
  5. Investigation of the diabetic effects of maternal high-glucose diet on rats. (Ozkan et al., 2018) – Source
  6. Three types of a high-carbohydrate diet are differently associated with cardiometabolic risk factors in Korean adults (Song & Song, 2018) – Source
  7. Relationship between Added Sugars Consumption and Chronic Disease Risk Factors: Current Understanding (Rippie and Angelopoulos, 2016) – Source

Studier som fokuserar på fördelarna med högfet kost

  1. Evidence that supports the prescription of low-carbohydrate high-fat diets: a narrative review (Noakes and Windt, 2016) – Source
  2. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects (Ruth et al., 2013) – Source
  3. The effect of an 8-week low carbohydrate high fat (LCHF) diet in sub-elite Olympic weightlifters and powerlifters on strength, body composition, mental state and adherence: a pilot case-study (Chatterton et al., 2017) – Source
  4. Fat utilization during exercise: adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans (Helge et al., 2001) – Source
  5. Re-Examining High-Fat Diets for Sports Performance: Did We Call the ‘Nail in the Coffin’ Too Soon? (Burke, 2015) – Source
  6. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study (Dehghan et al., 2017) – Source
  7. A healthy approach to dietary fats: understanding the science and taking action to reduce consumer confusion (Liu et al., 2018) – Source
  8. Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder (Jazayeri et al., 2009) – Source
  9. Dietary fat intake and the risk of coronary heart disease in women (Hu et al., 2007) – Source
  10. Are refined carbohydrates worse than saturated fat? (Hu, 2010) – Source
  11. Serial measures of circulating biomarkers of dairy fat and total and cause-specific mortality in older adults: the Cardiovascular Health Study (Otto et al., 2018) – Source

 

  • Like 3
Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...